Chapter 13 Exercises

Here are 12 questions for you lovingly selected from the pages of Tro, plus some supplementary method of initial rates problems (S1 - S3) because there seemed a shortage of 'real world' examples in Tro...

	Additional "Method of Initial Rates" Exercises					
S.1	Determine the rate equation and rate constant <i>k</i> for the following reaction:					
	2 ICI + H ₂	\rightarrow I ₂ + 2 HCl				
	[ICI] /mol.L ⁻¹	[H ₂] / mol.L ⁻¹	Initial Rate/ mol.L ⁻¹ s ⁻¹			
	0.10	0.01	0.002			
	0.20	0.01	0.004			
	0.10	0.04	0.008			

S2. Determine the rate equation and rate constant *k* for the following reaction:

 C_3H_6O + $Br_2 \rightarrow C_3H_5OBr$ + HBr

[C ₃ H ₆ O] / mol.L ⁻¹	[Br ₂] / mol.L ⁻¹	Initial Rate/ mol.L ⁻¹ s ⁻¹
0.10	0.10	1.64 x 10 ⁻⁵
0.20	0.10	1.64 X 10 ⁻⁵
0.10	0.20	3.29 X 10 ⁻⁵

S3. Determine the rate equation and rate constant *k* for the following reaction:

 $BrO_3 + 5 Br + 6 H^+ \rightarrow 3 Br_2 + 3H_2O$

[BrO ₃ ⁻] / mol.L ⁻¹	[Br ⁻] / mol.L ⁻¹	[H⁺]	Initial Rate/ mol.L ⁻¹ s ⁻¹
0.10	0.10	0.10	8.0 x 10 ⁻⁴
0.20	0.10	0.10	1.6 X 10 ⁻³
0.20	0.20	0.10	3.2 X 10 ⁻³
0.10	0.10	0.20	3.2 x 10 ⁻³

Rates of Chemical Reactions

Q36 The graph below shows a plot of the rate of a reaction versus concentration of the reactant.

- a. What is the order of the reaction?
- b. Make a rough sketch of how a plot of [A] vs time would appear
- c. Write a rate law for the reaction including the value of *k*.
- Q40. A reaction in which **A**, **B** and **C** react to form products is zero-order in **A**, one half order in **B** and second order in **C**.
 - a. Write a rate law for the reaction
 - b. What is the overall order of the reaction?
 - c. By what factor does the reaction rate change if [A] is doubled? (and the concentration of other reactants are held constant)
 - d. By what factor does the reaction rate change if [**B**] is doubled? (and the concentration of other reactants are held constant)
 - e. By what factor does the reaction rate change if [C] is doubled? (and the concentration of other reactants are held constant)
 - f. By what factor does the reaction rate change if the concentrations of all reactants are doubled?

Q44 The data below were collected for the reaction:

 $CH_3CI + 3 CI_2 \rightarrow CCI_4 + 3 HCI$

[CH₃CI]	[Cl ₂]	Initial rate
0.050	0.050	0.014
0.100	0.050	0.029
0.200	0.200	0.115

Write an expression for the rate law and calculate the value of the rate constant, *k*. What is the overall order of the reaction?

Q50 The following reaction was monitored as a function of time:

$A \rightarrow B + C$

A plot of ln[A] versus time yields a straight line with slope – 0.0045 s⁻¹

- a) What is the value of the rate constant, k, for this reaction at this temperature
- b) Write the rate law for the reaction
- c) What is the half life?
- d) What is the lifetime for this reaction?
- e) If the initial concentration of **A** is 0.250 mol.L⁻¹ what is the concentration of **A** after 225 s?

Activation Energies for Chemical Reactions

- Q58 A chemical reaction is endothermic and has an activation energy which is twice the value of the enthalpy of the reaction. Draw a diagram depicting the energy of the reaction as it progresses.Label the position of the reactants, and products and indicate both the enthalpy and activation energy for the reaction.
- Q60 The rate constant of a reaction at 32 °C is 0.055 s⁻¹. If the frequency factor is $1.2 \times 10^{13} \text{ s}^{-1}$, what is the activation energy for the reaction?
- Q62 The rate constant k for a reaction was measured as a function of temperature. A plot of $\ln(k)$ vs 1/T (in K) is linear and has a slope of -1.01 x 10^4 K. Calculate the activation energy for this reaction.

- Q68. A reaction has a rate constant of 0.000122 s⁻¹ at 27 °C and 0.228 s⁻¹ at 77 °C.
 - a) Determine the activation barrier for this reaction
 - b) What is the value of the rate constant at 17 °C?
- Q70 If a temperature increases from 20.0 °C to 35.0 °C triples the rate constant for a reaction what is the value of the activation barrier for the reaction?

Reaction Mechanisms

Q74 Consider the overall reaction which is experimentally observed to be second order in X and first order in Y.

 $X + Y \rightarrow XY$

- a) Does the reaction occur in a single step in which X and Y collide?
- b) Use the steady-state approximation to determine the rate law predicted by the following mechanism. Is this mechanism valid? Under what conditions?

$$2X \xrightarrow{k_1} X_2$$
$$X_2 + Y \xrightarrow{k_3} XY + X$$

Q76. Consider the two-step mechanism for a reaction:

NO₂(g) + Cl₂ (g)
$$\xrightarrow{k_1}$$
 CINO₂(g) + Cl(g) Slow
NO₂(g) + Cl(g) $\xrightarrow{k_2}$ CINO₂ (g) Fast

- a) What is the overall reaction?
- b) Identify the intermediates in the mechanism
- c) What is the predicted rate law?

Catalysis

Q79 Suppose that a catalyst lowers the activation barrier of a reaction from 125 kJmol⁻¹ to 55 kJmol⁻¹. By what factor would you expect the reaction rate to increase at 25 °C? [Assume that the frequency factors for the catalysed and uncatalysed reactions are the same].